
Pergamon 
Computers & Geosciences Vol. 23, No. 7, pp. 763-770, 1997 

0 1997 Elsevier Science Ltd. All rights reserved 
Printed in Great Britain 

PII: f3OO9&3004(97)ooo49-6 0098-3004/97 $17.00 + 0.00 

A SAS-IML PROGRAM FOR IMPLEMENTING TWO-PHASE 
REGRESSION ANALYSIS OF GEOPHYSICAL TIME SERIES 

DATA 

GERRI M. DUNNIGAN,’ JOHN L. HAMMEN,’ and T. ROBERT HARRIS’ 

Department of Mathematics, Box 8376, University of North Dakota, Grand Forks, North Dakota 
58202, U.S.A., and ‘Department of Geography, Box 9020, University of North Dakota, Grand Forks, 

North Dakota 58202, U.S.A. 
(e-mail: gerrid@sage.und.nodak.edu) 

(Received 29 May 1996; revised 17 February 1997) 

Abstract-Two-phase regression analysis has been shown to have utility in geophysical time series 
analysis. Based on linear regression, the technique operates by locating a change point, if one exists, 
where a significant change in slope occurs. The timing of the break can then be associated with natural 
and anthropogenic variables which are thought to impact the behavior of the dependent variable. The 
technique is not widely available in commercial statistical packages. A SAS Interactive Matrix 
Language program is presented here to implement the technique. 0 1997 Elsevier Science Ltd 
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INTRODUCTION 

A variety of techniques exists for time series analy- 
sis of geophysical data, with differing degrees of 

sophistication and utility. Linear regression, where 

a geophysical variable (e.g. temperature) is 

regressed over time, is one of the most basic and 
widely used deterministic models. Questions of 

appropriateness and applicability aside (Woodward 

and Gray, 1993; Garbrecht and Fernandez, 1994). 
there are additional significant considerations in 
using linear regression either to predict future 
trends or to describe past events mathematically. 
Specifically, linear regression may “mask” other 
effects in the data (e.g. autocorrelation) or may be 
significantly influenced by abrupt data “breaks”. 
Kite (1993), for example, in evaluating secular 
trends in lake levels at Lake Victoria, Jinja, noted 
that in initial tests, 30% of the variation was a 
result of linear trend. However, when a period of 
sudden rise (four years in duration) was removed 
from the data set, variance due to linear trend 
became negligible. These data “breaks” are of par- 
ticular interest where attempts are made to correlate 
changes in data patterns with the timing of other 
environmental factors or anthropogenic activity. 

Two models which provide valuable insight into 
the existence, timing, and significance of data 
“breaks” are two-phase and piecewise regression. 
Conceptually, the techniques are extensions of lin- 
ear regression wherein change points are identified 

as locations where the regression line changes. A 
linear regression is then calculated for each subset 
of data (i.e. from the beginning of the data set to 
the change point and from the change point to the 
end of the data set). Two-phase regression man- 
dates that the two best-fit lines be joined at the 
change point; there is always, then, a difference in 
slope between the two “new” data sets. Piecewise 
regression does not require that trend lines be 
joined at the change point, thus allowing any 
change in slope and intercept (Fig. 1). 

Both techniques are enjoying increasing use, par- 
ticularly in climate change scenarios. Hanson, 
Maul, and Karl (1989), for example, employed two- 
phase regression to test for constancy of mean in 
precipitation and temperature data averaged for the 
contiguous U.S. and the northern plains region of 
the U.S. Skaggs and Baker (1989) analyzed a long- 
term temperature record for eastern Minnesota 
using two-phase regression. Cooter and Leduc 
(1995) utilized piecewise regression to detect discon- 
tinuities in frost dates in the north-eastern U.S. 

The techniques provide a valuable, “second-step” 
analytical procedure, easily adopted and understood 
by those familiar with basic linear regression. In ad- 
dition, whereas the concepts surrounding two-phase 
regression are described in the literature, it may not 
be clear to applied scientists how to implement the 
computations needed for estimates and significance 
tests. Therefore we offer a two-phase regression 
program readily implemented using the Interactive 
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Figure 1. Two-phase and piecewise regression. (A) and (B) 
illustrate required connection between trendlines in two- 
phase regression, whereas (C) and (D) show discontinuities 

allowed in piecewise regression. 

Matrix Language (IML) available in both main- 
frame- and PC-based SAS. 

TWO-PHASE REGRESSION 

The two-phase model can be written: 

Yi=f(Xi;~O,BO,~l,BI,C)+Ci (i= 1,2,...,m) (1) 

where 

f(Xi;@O~BO~~l*Bl,C)= (yl +blXi I QO + BOXi if xj<c (2) 
if Xi 2 C, 

el, ez, . . . . e, are independent, normally distributed 
random errors with mean 0 and common variance 
a’; and 

a0 + Boc = 011 + BIG. (3) 

In the applications discussed here, x1, x2, . . . . x, 
are times and are usually equally spaced. Without 
loss of generality, Xi = i (with the possible excep- 
tion of a few missing values). Thus the values yl, 

Y2, .A., Y,,, are a time series with the trend given 
by Equation (1). The independence, homoscedasti- 
city, and normality of the errors allow the use of an 
extension of ordinary least squares (OLS) regression 
methods, The user of these methods will need to 
evaluate the appropriateness of these assumptions 
for the application. In particular, the assumption of 
uncorrelated errors in time series has often been 
made (Solow, 1987) but has also been deemed inap- 
propriate in many situations (Box, Jenkins, and 
Reinsel, 1994). 

,Yi = U + BXi +  ei (10) 

by the generalized likelihood ratio hypothesis test 
of the simple linear regression model as the null hy- 
pothesis, versus the two-phase model as the alterna- 
tive hypothesis. (Thus the alternative hypothesis 
states that b 20 and min (xi, x2, . . . . x,) <c < max 

(XI, X2, ...t x,,J). This procedure rejects the null hy- 
pothesis at significance level a if U> F3,m _ A(a), 
where 

u = (So - 8 s . 
3 I (m - 4) ’ 

The unknown parameters are the regression line 
parameters ao, PO, al, and PI; the change point par- 
ameter c; and the error variance c2. Equation (3) 
implements the restriction of the two-phase model, 
that the lines intersect at the point x = c. Thus 
given c, only three of the four regression line par- the two-phase model. 

So is the residual sum of squares of the simple 
linear regression model; S is the residual sum of 
squares of the two-phase model; and F3,,,, _ d(a) is 
the upper G( critical value of the F distribution with 
3 and m - 4 degrees of freedom. The degrees of 
freedom may seem surprising in view of the number 
of parameters in the two models, but they have 
been verified empirically by Hinkley (1971). 
Apparently they are affected by the nonlinearity of 

ameters are functionally independent. After alge- 
braic manipulation, the model can be written: 

_Yj=a+bOXi+bWi+ei (4) 

where 

and 

ao=Q, Bo=bo, /!?I =bo+b (5) 

Wi = 

i 

Xi-C ifxizC 
0 if Xi<C. 

164 G. M. Dunnigan, J. L. Hammen, and T. R. Harris 

In this form, the parameters are regression line 
parameters a, bo, and b; change point parameter c; 
and error variance a2. The model is nonlinear 
because of the dependence on c. 

In either form, the model may be estimated by 
fixing c, obtaining the (usual) OLS estimates of the 
regression line parameters given c, and computing 
the residual sum of squares, which depends on c. 
The value of c which minimizes the residual sum of 
squares can be determined by a numerical method 
such as grid search. The OLS estimates are then: 

? : the value of c that minimizes the residual 

sum of squares; (7) 

fi, &, b^ : the OLS estimates of a, bo, 

and b with c fixed at L?; and (8) 

20, ,& &I, 61 : obtained by replacing a, bo, 

and b by their estimates in 

Equation(S). (9) 

The two-phase model may be compared with the 
simple linear regression model 
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IML PROGRAM DESCRIF’TION AND 
IMPLEMENTATION 

The following program will fit a simple linear 
model and a two-phase regression model to a set of 
observations and then test whether the two-phase 
model is significantly better than the simple linear 
regression model. The program is designed for data 
in which the independent variable is integer valued, 
as is the situation for many geophysical applications 
where observations or measurements are made 
yearly. Slight modifications would make it suitable 
for data in which the independent variable assumes 
non-integer values. The program presented next is 
applied to the Baker, Watson, and Skaggs (1985) 
long-term temperature record data for eastern 
Minnesota. Temperature is measured in degrees 
Celsius. 

It is assumed that the data are stored in a file with 
each pair of observations (year and temperature in 
this application) entered on a separate line with at 
least one space separating the two observations. If 
the data file is formatted differently, then it needs to 
be altered or appropriate changes to the data step 
will be required. Here the file Baker contains the 
year and temperature values for eastern Minnesota 
for the years 1820 to 1982. 

data setl; 

infile Baker; 

input Year Temp; 

The independent variable, Year in this appli- 
cation, is scaled so that it has a minimum value of 
one. In this application the first recorded tempera- 
ture corresponds to the year 1820. So by subtract- 
ing 1819 from all values of Year in the data set, 
the independent variable will have values ranging 
from 1 to 163. Scaling the independent variable is 
conducive to more general program statements and 
less demanding computations. S calYr is the 
name given to the scaled Year variable. The fol- 
lowing code creates a data set termed MinnTemp 
containing the variables ScalYr and Temp and 
prints the data set. 

data MinnTemp; set setl; 

ScalYr=Year - 1819; 

proc print data=MinnTemp; 

This program uses the SAS IML (Interactive 
Matrix Language) (1989) programming language to 
fit the simple linear and two-phase regression 
models. The following code invokes IML and loads 

the MinnTemp data into the matrix D. Matrix D 
is then printed for reference. 

proc iml; 

use MinnTemp; 

read all var {ScalYr Temp} into D; 

print D; 

A simple grid search is used in fitting the two- 
phase regression model. The range of values for the 
independent variable, in this application 1 to 163, is 
partitioned into equally spaced subintervals. The 
space between successive points in the partition will 
be 1/2p for some integer p chosen by the user. For 
example, if p = 2, the partition would consist of the 
points 1, 1.25, 1.5, 1.75, 2, 2.25, . . . . 162.5, 162.75, 
163. The program considers in turn each interior 
point of the partition (excluding the endpoints 1 
and 163) as the change point, c, and computes the 
corresponding residual sum of squares. The pro- 
gram then determines which point yields the smal- 
lest residual sum of squares and takes this point as 
the estimate of the change point. (This estimate was 
denoted 2 in the preceding discussion of two-phase 
regression but will be output as c by the program. 
The choice of p is left to the user of the program). 
N is the largest value of S calYr and M is the 
total number of observations in the data set. Note 
that N and A4 will be the same if there are no miss- 
ing values in the data set as is the situation for this 
application where N = M = 163. G is the number 
of interior points in the partition. 

N=163; 

M=163; 

p=o; 

G=(N-1)*(2**p)-1; 

The following code defines the matrices to be 
used in fitting the two-phase regression models 
(using standard regression notation) as the change 
point c assumes values in the grid. The first three 
lines set the number of rows and columns in each 
of the matrices X, Y, and SSE, and the remaining 
lines load data into X and Y from the data matrix 
D. 
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X=j (M,3,0); /* Design matrix X has M rows and 3 columns */ 

Y=j(M,l,O); /* Dependent variable matrix Y has M rows and 1 column */ 

SSE=j(G+1,5,0); /* Matrix SSE has G+l rows and 5 columns */ 

do i=l to M; 

X[i,l]=l; /* Intercept */ 

X[i,2]=D[i,l]; /* ScalYr */ 

Y[i,l]=D[i,Z]; /* Temp */ 

The following code computes the parameter estimates and residual sum of squares obtained when fitting 
a two-phase regression model to the data using each of the grid values for c, and places them in the matrix 
SSE. The first column of SSE will contain the values of c, the second column will contain the correspond- 
ing residual sum of squares, and columns three through five will contain the corresponding parameter esti- 
mates ci, bo, and b, respectively, from Equation (8). 

do k=l to G: 

do i=l to M; /* Wi in (4) */ 

if D[i,l]<=c then X[i,3]=0; 

else X[i,3]=D[i,l]-c; 

end; 

SSE[k,l]=c; 

b=inv(X'*X)*X'*Y; 

/* c values go into column 1 */ 

SSE[k,2]=Y'*Y_b'*X'*Y; /* Residual sums of squares go into column 2 */ 

SSE[k,3]=b[l,l]; /* d */ 

SSE[k,4]=b[2,1]; /* 1;, l / 

SSE[k,5]=b[3,1]; /* b^ */ 

end; 

Matrix X is then redefined and a simple linear regression model is fitted to the data. The corresponding 
residual sum of squares becomes the last entry in column two of the matrix SSE. Matrix SSE is then 
printed for reference and a plot of the residual sum of squares is constructed. 
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X=j(M,Z,O); /* Matrix X has M rows and 2 columns in fitting simple model */ 

do i=l to M; 

X[i,l]=l; /* Intercept */ 

X[i,2]=D[i,l]; /* ScalYr */ 

end; 

SSE[G+l,l]=l; 

b=inv(X'*X)*X'*Y; 

/* "c=l" denotes the simple linear model */ 

SSE[G+1,2]=Y'*Y - b'*X'*Y; /* Residual sum of squares for simple model l / 

Alpha=b[l,l]; /* 6. estimates Ci in (10) */ 

Beta=b[2,1]; /* fi estimates p in (10) l / 

print SSE; 

The following code constructs a plot of the residual sum of squares. Because pgr af (which is used to 
plot the residual sum of squares against c) operates on matrices with two columns, we first define the 
matrix S as a matrix containing the first two columns of SSE. 

S=j (G+1,2); /*Matrix S will contain the first two columns of SSE */ 

do i=l to G+l; 

S[i,l]=SSE[i,l]; 

S[i,2]=SSE[i,2]; 

end; 

call pgraf(S,'$','c','SSE','Residual Sum of Squares'); 

A search for the minimum residual sum of squares value is then conducted. The minimum value is 
assigned to the variable MinSSE; c assumes the value of the grid point that corresponds to this minimum 
value; and a, be, and b will assume the values of the parameter estimates associated with this value of c. 
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c=l; 

MinSSE=SSE[G+1,21; 

SLSSE=SSE[G+1,21; /* Residual sum of squares for the simple linear model l / 

do k=l to G; 

if SSE[k,2]<=MinSSE then do; 

c=SSE[k, 11; 

MinSSE=SSE[k,2]; 

a=SSE[k,3]; 

bO=SSE[k,41; 

b=SSE[k, 51; 

end; 

end; 

The parameter estimates and residual sum of squares for the two-phase and simple linear regression 
models are printed. 

print Alpha; 

print Beta; 

print SLSSE; 

print a; 

print b0; 

print b; 

print c; 

print MinSSE; 

A hypothesis test of the two-phase regression model versus the simple linear regression model is then 
performed. The test statistic, F t es t , and its corresponding p-value, Pval, are then printed. 

DDF=M-4: 

Ftest=((SSE[G+1,2] - MinSSE)/3)/(MinSSE/DDF); 

print Ftest: 

Pval=l - probf(Ftest,3,DDF); 

print Pval; 

quit; 
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Figure 2. Plot of residual sum of squares with respect to change point value c. 

PROGRAM OUTPUT 

In this application to the Baker, Watson, and 
Skaggs (1985) data, the following output was pro- 
duced. Figure 2 is a plot of the residual sum of 
squares plotted against the values of c in the grid. 
This is a rough plot, but one can get a good idea of 
the behavior of the residual sum of squares for the 
different choices of change point. In this example, 
one can clearly see the approximate location of the 
minimum. In some applications, there may be more 
than one significant “valley” in the graph. This 
would indicate the presence of a local minimum or 
local minima which may warrant further investi- 
gation. These local minima may be identified by 
looking at the residual sum of squares plot, even 
though the program (excluding the plot) only ident- 
ifies the absolute minimum sum of squares and the 
corresponding change point c. The selection of p 

warrants further discussion. In this application, it 
was determined that p = 0 (which yields a partition 
containing just the integers from 1 to 163) gave the 
same results as did larger values of p. Further appli- 
cations involving independent variables assuming 
only integer values yielded the same result. 
However, in an application involving an indepen- 
dent variable whose values were not restricted to 
integers, p = 8 was required before no change was 
observed in the output value of the change point c. 
One possible strategy, then, is to run the program 
consecutively using larger values of p until no 
change is observed in the output value of c. One 

Table 1. Parameter estimates and hypothesis test results. 

SSE 

Intercept(s) 

slope 
Change Point 
Test Statistic 
p-value 

Simple Model Two-Phase Model 

(SLSSE) 194.400 (MinSSE) 186.955 

B(Alpha) = 5.540 
&,(~A) = 6.136, 

j(j(~))“_4.9~012, 
&Beta) = 0.007 j, =0.013 

?(c) = 47 
U (FTesf) = 2. I1 I 

(PVal) = 0.101 

may also choose values of p to achieve a predeter- 
mined level of precision. 

The parameter estimates and hypothesis test 
results are summarized in Table 1. The notation for 
these estimates and test results used in the program 
are given in parentheses. The values of the par- 
ameter estimates not output by the program are 
computed using formulas given in the theory sec- 
tion and the parameter estimates output by the pro- 
gram. The estimate of the change point is the same 
and the parameter estimates are nearly the same as 
those obtained by Skaggs and Baker (1989). The 
differences observed in the parameter estimates, the 
sum of squares, the test statistic, and the p-value 
are attributable to five additional data points that 
were used by Skaggs and Baker (1989) that were 
not yet recorded by Baker, Watson, and Skaggs 
(1985). In this application, the test indicates that 
the two-phase model is not significantly better than 
the linear model at significance 
lower. 

level a = 0.10 or 

SLJMMARY 

Two-phase regression analysis is a sophisticated 
yet, as presented here, an easily implemented tech- 
nique of considerable utility in time series analysis. 
It is especially well suited as a preliminary analyti- 
cal step in studies attempting to discern changes in 
geophysical data, wherein the time of change is of 
interest. The technique has also been used to 
remove serial correlation effects from a geophysical 
dataset (Skaggs, Baker, and Ruschy, 1995). The 
code is publicly available by anonymous FTP from 
IAMG.ORG. 
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